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Abstract

We present the first work on predicting reading
mistakes in children with reading difficulties
based on eye-tracking data from real-world
reading teaching. Our approach employs sev-
eral linguistic and gaze-based features to in-
form an ensemble of different classifiers, in-
cluding multi-task learning models that let us
transfer knowledge about individual readers to
attain better predictions. Notably, the data we
use in this work stems from noisy readings
in the wild, outside of controlled lab condi-
tions. Our experiments show that despite the
noise and despite the small fraction of mis-
readings, gaze data improves the performance
more than any other feature group and our
models achieve good performance. We further
show that gaze patterns for misread words do
not fully generalize across readers, but that we
can transfer some knowledge between readers
using multitask learning at least in some cases.
Applications of our models include partial au-
tomation of reading assessment as well as per-
sonalized text simplification.

1 Introduction

Reading disabilities are impairments affecting in-
dividuals’ access to written sources, with down-
stream effects such as low self-confidence in the
classroom and limited access to higher education.
Dyslexia, for instance, while being highly preva-
lent with estimates reaching up to 17.5% of the
entire population of the U.S. (Interagency Com-
mittee on Learning Disabilities, 1987), often goes
undiagnosed, such that unattributed weaknesses
in reading comprehension further intimidate af-
fected persons. Due to these severe and broad-
ranging impacts of reading difficulties, many gov-
ernments have implemented early screening tests
for dyslexia and other reading difficulties and pro-
vide special training and assistance for struggling
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Figure 1: Scanpath and fixations (blue circles)
when reading a sentence. This particularly clear
example from our dataset shows extended process-
ing time for misread words (marked in red).

readers throughout the educational system and
into adulthood.

In Denmark, for example, such programs pro-
vide children with specialist training through fo-
cused multi-week reading courses in one-on-one
or small group settings. Still, the specialized teach-
ers can only attend to one student at a time when
closely monitoring their reading, and the quality of
any analysis is strictly limited by the human ob-
server’s processing “bandwidth” while attending
the live reading.

As a possible mitigation, advances in eye-
tracking technology–in particular the increased
availability of eye trackers–have made it possible
to reliably record children’s gaze during reading,
both allowing teachers to attend to their students’
reading post-hoc as well as providing additional
insight into reading strategies based on gaze, in-
cluding the development of these strategies over
time. For the teacher to track and keep records of
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reading mistakes (henceforth referred to as mis-
readings), however, the students are still required
to read out loud, and the teacher has to review the
entire reading and annotate for misreadings.

In this work, we investigate to what extent we
can predict misreadings from gaze patterns for in-
dividual words. While the aim is not to fully au-
tomate reading reviews, being able to successfully
predict misreadings from gaze data can be part of a
semi-automatic system for reading quality assess-
ment and increase teacher efficiency by pointing
out potential misreadings for closer review.

Another motivation for this work comes from
text simplification, in particular from the obser-
vation that individuals’ highly specific reading
strengths and weaknesses require text simplifica-
tion models to be customized to specific users in
order to unfold their full potential and truly be
helpful. Predicting misreadings in concrete read-
ing scenarios and based on individual gaze pat-
terns can be used as a first step in the typical lexi-
cal simplification pipeline (Shardlow, 2014).1 This
task, known as complex word identification, has
received a considerable amount of attention in the
literature, but has exclusively been approached in
a user-agnostic fashion.

The data used in this study are gaze recordings
of children with reading difficulties, reading Dan-
ish texts assigned by their reading teacher as part
of their reading intervention. The recordings stem
from EyeJustRead, an eye-tracking based soft-
ware used in special reading intervention in Dan-
ish schools.2 In Section 3, we discuss further as-
pects of the treatment of gaze data in general and
the collection of the data used in this study in par-
ticular.

While the difficulty of processing a word is un-
doubtedly reflected in the fixation time on that
word (Rayner et al., 1989), many other factors
affect fixation durations, the most prominent be-
ing word length and word frequency, but also pre-
dictability and relative position in sentence have
strong effects–see Figure 1 for a particularly clear
example from our dataset. Notably, almost all
analyses of eye-tracking reading data use data
collected in research laboratories, where these–

1While today it may hardly sound plausible to equip each
laptop with an eye-tracker in order to track people’s reading,
further technological advances may well make this possible
in the future. Recent development in eye-tracking technology
has taken it from expensive research equipment to a gaming
interface with a price point as low as $100.

2http://www.eyejustread.com

otherwise confounding–factors can be controlled
for. We show that we can perform reasonable mis-
reading detection on real-world eye tracking data,
including a limited number of textual features to
control for these factors.

Contributions a) We present the first work on
the automatic detection of misreadings based on
gaze patterns of children with reading difficulties.
b) This is, to the best of our knowledge, the first
attempt at modeling noisy, real-world eye-tracking
data from readers. c) We also present, to the best
of our knowledge, the first published results using
a multi-task learning setup to transfer knowledge
between individual readers for personalized, com-
plex word identification.

2 Related Work

Our work is a special case of complex word identi-
fication, a task that has recently received a signifi-
cant amount of interest, including two shared tasks
(Paetzold and Specia, 2016; Yimam et al., 2018).
The most successful approaches to these tasks had
in common that they employed ensembles of clas-
sifiers that learned from a number of semantic and
psycholinguistic features. Note however, that these
previous approaches to complex word identifica-
tion aimed at developing generic models that took
no account of any specifics of a certain user.

Children’s eye movements during reading are
not as well-studied as adults’, and previous stud-
ies typically analyze data collected in experiments
designed for research. The overall established ob-
servations with regards to reading development
are: older children have shorter fixation durations,
fewer fixations and fewer regressions. They have
a higher skipping probability and also higher sac-
cade amplitude. See Blythe and Joseph (2011) for
a review. It is not conclusive whether these vari-
ations follow chronological age or their increased
reading proficiency. Regardless of the underlying
cause, due to the observed systematic differences,
the standard procedure is to control as closely
as possible for age and reading proficiency level
when designing reading experiments.

There are several psycholinguistic studies that
show that also in children, the typicality and plau-
sibility of sentences (Joseph et al., 2008) as well
as temporary sentence ambiguity (Traxler, 2002)
can be traced in eye movements, suggesting that
also other types of comprehension difficulties are
reflected in the reading patterns.
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Using gaze data to augment models is a recent
addition to NLP. Previous approaches that have
used gaze data in the context of natural lan-
guage processing include the work of Barrett et al.
(2016), who aim to improve part-of-speech induc-
tion with gaze features, Klerke et al. (2016), where
gaze data is used as an auxiliary task in sentence
compression, and Klerke et al. (2015b), where
gaze data is used to evaluate the output of ma-
chine translation. The most related work is Klerke
et al. (2015a) and Gonzalez-Garduño and Søgaard
(2017). Klerke et al. (2015a) compared gaze from
reading original, manually compressed, and auto-
matically compressed sentences. They found that
the proportion of regressions to previously read
text is sensitive to the differences in human- and
computer-induced complexity. Gonzalez-Garduño
and Søgaard (2017) show that text readability pre-
diction improves significantly from hard parame-
ter sharing when models try to predict word-based
gaze features in a multi-task-learning setup. All
of these works, however, use gaze data that was
collected under laboratory conditions from skilled,
adult readers.

3 Gaze Data

In eye-tracking studies, gaze data is normally
sampled under experimental circumstances, where
e.g. instructions, location, environment, lighting,
participant sampling, textual features, order, dura-
tion etc. are controlled for. Our real-world data, on
the contrary, lacks all of these controls. While in
controlled, cognitive psychology experiments, fix-
ation durations have proven to systematically cor-
relate with cognitive load (see Rayner (1998) for a
review), eye movements from-real world applica-
tions have been largely understudied, and specific
findings from the literature on controlled data may
not apply here or may be swamped by extraneous
factors. Further, the often-used statistical tests of
significant differences between gaze patterns lose
some of their legitimacy when data is retrieved un-
der noisy conditions.

3.1 Data collection and preprocessing

The data we use in this work is collected in Dan-
ish schools using commercial software specifically
developed to record and track children’s reading
development. The system records the eye move-
ments and voice while the children are reading
aloud. The teacher can afterwards replay the read-

ing along with the recorded eye movements. The
software performs some low-level eye-movement
analyses to help the teacher understand how the
child processes the text. The teacher can mark
which words are erroneously read by the child and
later access this and other basic statistics about the
reading – see Klerke et al. (2018) for a workflow
description. The genre is children’s fiction books
and the children read contextualized, running text.

As the data is fairly noisy compared to data
from laboratory-based eye tracking experiments,
we perform thorough cleaning before running any
experiments. This cleaning procedure is described
below. Table 1 contains a summary of the dataset
sizes after each cleaning step. Before any cleaning
is performed, the dataset contains 369 reading ses-
sions from 95 unique readers. In total it has 3,161
read pages.

Help word activated on page We start by re-
moving all pages where the reader activated the
help word function, which dynamically isolates
and enlarges a single word on the screen. This dy-
namic display generates a series of eye movements
that do not resemble typical reading activity. This
step removes 94 pages.

Fixation detection We pre-process the raw gaze
data by first detecting fixations using a custom
implementation of the algorithm of Nyström and
Holmqvist (2010). We remove fixations shorter
than 40ms and longer than 1.5s.3 For the calcu-
lation of gaze features (see below), we further dis-
card all data points that are not detected as a fixa-
tion on text (but instead on images or blank parts
of the page). We remove 19 pages where we do not
have any fixations on text (e.g. due to the reader
just browsing through a book or because of tech-
nical issues).

Bad calibration Prior to reading, the student is
prompted to calibrate the eye tracker. In the data
used in this study, most reading sessions (91%) at-
tain the best calibration score on a five-point scale,
while 6% miss a calibration score. The remaining
3% do not have the best calibration score. We re-
move everything but the 91% with the best cali-
bration score.

Only parts of the readings have been reviewed

3Removing short fixations also removes the majority of
blinks which presents as a sudden downward-upward pattern
of saccades separated by a pause in the signal or a short,
falsely detected fixation.
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Cleaning step Reading sessions Unique readers Read pages Read words Misreadings

No cleaning 369 95 3161 73,965 644
Help word activated 366 95 3067 71,911 619
Fixation detection 366 95 3048 64,191 613
Bad calibration 335 87 2865 56,166 565
Marked by teacher 83 44 405 8,681 565

Table 1: Dataset size after each cleaning step

and marked for misreadings by a teacher. How-
ever, whether a teacher reviewed a reading or not
is not explicitly encoded in the data. Thus, if there
are no marked misreadings in some session, we
do not know whether this is because this reading
was not reviewed or because there actually were
no errors. We therefore remove all readings with-
out any marked misreadings, as well as any data
before the first marked misreading and after the
last marked misreading within marked sessions,
assuming that everything between these two points
has been marked. Twelve cleaned reading sessions
only consist of one misread word – everything be-
fore and after was removed. See Figure 2a for an
overview of the distribution of number of words
per reading after this cleaning step. This leaves
us with the subset of the readings that posed most
problems for the subjects. Figure 2b shows the dis-
tribution of misread words in the cleaned dataset.
It is worth noting that since this is not controlled,
experimental data, “misread” is not necessarily in-
terpreted equally by all teachers, or even consis-
tently across markings from the same teacher, due
to the lack of an annotation protocol. We assume
that “misread” means that the pronounced word
deviates substantially from the written word. Ul-
timately, we retain 83 reading sessions from 44
readers with at least one misread word.

3.1.1 Apparatus
The eye tracker used is a Tobii Eye Tracker 4C
with a sample rate of 90 Hz. It is an affordable,
consumer eye tracker targeted at gaming. The lap-
top computers to which the trackers are attached,
and which run the software, are provided by the
different institutions and vary. Screen resolution is
locked by the eye tracker software to 1366 x 768,
and most systems reportedly run on a 14”–15.6”
monitor. The font size is 50pt, which is equivalent
to approximately 6mm x-height. Distance between
baselines was approximately 18mm with the most
commonly used font–otherwise 24mm.
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Figure 2: Distributions of total number of words
and misreading ratios per session after cleaning.

3.1.2 Subjects
The cleaned dataset contains 44 unique readers
with different reading durations. Readers are prob-
ably between 5 and 15 years old, which is the of-
ficial age of students in the Danish schools, but
we do not know their exact ages. To control for
reading proficiency, we include the texts’ readabil-
ity scores as a feature in all experiments. All stu-
dents receive extra reading classes, because they
struggle with reading. Many of them are probably
dyslexic, but we do not have access to this infor-
mation. Because this is not experimental data, the
students will have received different instructions
from the teachers. We do not know if they picked
the text themselves or for how long they read prior
to each recording. They are not necessarily alone
in the room, but it is a fair assumption that they
all make an effort to read correctly because they
are recorded. The data comes from a number of
different systems that we were informed is in the
range between 10 and 20, but the actual num-
ber of schools and teachers is unknown to us. All
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children and their parents gave consent that the
anonymized eye-tracking data may be used for this
research.

3.2 Features

Reading patterns have been shown to be influ-
enced by a number of factors, including textual
features and the instructions given to a reader, such
as encouraging a specific reading strategy. Read-
ers, or different groups of readers, furthermore dis-
play individual reading styles which affect the eye
movements (Benfatto et al., 2016). Other factors
include the reader’s individual skill level, cogni-
tive abilities and mood, among others.

We extract a number of gaze features that have
been associated with processing load. Some of our
gaze features directly reflect the processing load
associated with a word, especially the two corre-
lated measures total fixation duration and number
of re-fixations, but also the mean fixation duration.
Some gaze features are included to account for
preview effects (whether the next or previous word
was fixated) as well as the scan path immediately
surrounding the word. We split the gaze features
into two groups: GAZE (W) for features directly
associated with word-level processing and GAZE

(C) for features associated with the eye move-
ments on the immediate context of the word. All
features are scaled to the [−1, 1] interval.

We further extract a number of basic features
that are known to affect gaze features and thus
need to be controlled for. These include word
length and word frequency (Hyönä and Olson,
1995), but also position in sentence (Rayner et al.,
2000) and position on the page have shown to af-
fect reading for adults. We also include a range of
linguistic features that we expect to describe word
difficulty. All features and feature groups are listed
in Table 2 and described below.

Gaze features During reading, the reader per-
forms a series of stable fixations of a couple of
hundred milliseconds duration on average. Be-
tween fixations, the eyes perform rapid, targeted
movements, called saccades. All gaze features are
computed on the word level and use the applica-
tion’s definition of the area of interest surrounding
each word.

For gaze duration, we extract both late and early
processing measures. Late measure such as total
fixation duration and number of re-fixations reflect
late syntactic and semantic processing in skilled

adult reading (Rayner et al., 1989). For children
with reading difficulties, we assume these mea-
sures to likely reflect processing difficulty.

For the first three passes over a word, we also
extract the direction and the word distance of both
the ingoing and outgoing saccade.4 These six fea-
tures are expected to map the activity around the
word and, for example, show whether some word
was part of sequential, forward reading or oc-
curred in a series of erratic saccades.

Four features indicate the landing positions of
fixations in four equally-sized parts of the display
width of a word. This captures whether a word,
for instance, has three fixations on the last quarter
of its display width, which would be atypical and
suggest that the reader is struggling with the end-
ing of this word. We further explicitly encode the
landing position of the first and last fixation. Note
that because of the anatomy of the eye, eye track-
ing can never be pixel-accurate, but has at least
2° inaccuracy. For short words (or words printed
very small, which does not apply for this study)
these features may be misleading.

The data also provides pupil sizes for both eyes.
It is well known that the pupil dilates as response
to external lighting factors, but there is also evi-
dence that the pupil systematically–but on a much
smaller scale–dilates as a response to mental state,
emotions or concentration (Beatty et al., 2000).
In an experiment collecting pupil size, one would
control lighting, which was not possible in the
present scenario. For all pupil measures, we sub-
tracted the same side mean of the reading ses-
sion. We confirmed that all changes larger than
0.6 times the mean were captured when remov-
ing short fixations, as they may be caused by
the tracker mistaking eyelashes for pupils during
blinks.

Basic features The basic features span 16 tex-
tual and presentational features that are either di-
rectly accessible via the system or easily obtain-
able. They are included in all our experiments and
serve as control features for the gaze features be-
cause we expect them to explain some of the vari-
ance in the gaze features, e.g. reading changes

4As we removed everything that was not a fixation on
text before calculating the gaze features, intermediary non-
text fixations may have occurred between text fixations, such
as image fixations. We count the last/next fixated word. For
example, if a word has index 5, and the first pass incoming
saccade is from word index 4, we get a feature value of -1 for
first pass ingoing.
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BASIC GAZE ON WORD (W)

Is bold Number of fixations on word
Is italic First fixation duration
Is lowercase Mean fixation duration
Is uppercase Total fixation duration
Has punctuation Count of passes over the word
Line index on page Left pupil size
Word index on line Right pupil size
Page number Refixation counts
Position in sentence (relative) Fixations in first quarter count
Position in sentence (absolute) Fixations in second quarter count
Sentence length (characters) Fixations in third quarter count
Sentence length (words) Fixations in fourth quarter count
Word index Relative landing position of first fixation
Sentence index Relative landing position of last fixation
Word length (characters) Average character index of fixations

GAZE IN CONTEXT (C) LINGUISTIC

1st pass ingoing saccade dist. and dir. LIX score for entire text
1st pass outgoing saccade dist. and dir. Previous occurrences of word stem in text
2nd pass ingoing saccade dist. and dir. Previous occurrences of word type in text
2nd pass outgoing saccade dist. and dir. Vowel count
3rd pass ingoing saccade dist. and dir. Character perplexity
3rd pass outgoing saccade dist. and dir. Word frequency
Next word fixated Universal POS tag
Previous word fixated

Table 2: Overview of the feature groups used in the experiments.

over the course of a line and the course of a sen-
tence (Just and Carpenter, 1980). We further en-
code the line number a word is located in on a
page, as well as its position in that line.

Linguistic features The linguistic features in-
clude the absolute vowel count, which in Dan-
ish is highly correlated with the number of syl-
lables. Universal POS tags are obtained from the
Danish Polyglot tagger.5 We also include the pro-
vided Läsbarhetsindex (LIX) (Björnsson, 1968),
a Swedish readability metric (commonly also ap-
plied to Danish) that considers the mean sentence
length and the ratio of long words (more than
6 characters). The log word probability is esti-
mated from a language model we train on the en-
tire Danish Wikipedia (downloaded in November
2017) using KenLM (Heafield, 2011). Frequency

5http://polyglot.readthedocs.io

affects processing load and thus fixation dura-
tion for adults as well as dyslexic and neurotyp-
ical Finnish children (Hyönä and Olson, 1995),
but there is conflicting evidence whether text fre-
quencies from adult text explain variance in chil-
dren’s eye movements (Blythe and Joseph, 2011).
Character perplexity is estimated using a 5-gram
character language model, also using KenLM on
the Danish Wikipedia. The previous occurrence of
stems and word types is included as reading time
for low-frequency words has shown to decrease on
later repeats in a text (Rayner et al., 1995). We use
NLTK’s snowball stemmer for Danish.

4 Model

In preliminary experiments, we observed that the
relatively small overall amount of data, as well
as the low fraction of positive instances, caused
significant variation between repeated random
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Feature group F1

BASIC 18.78 †
+ GAZE (W) 40.50 *
+ GAZE (C) 18.49 †
+ LINGUISTIC 19.24 †
+ GAZE (W) + GAZE (C) 41.19 *
+ GAZE (W) + LINGUISTIC 41.08 *
+ GAZE (W) + LINGUISTIC 18.65 †

All features 40.42 *

Table 3: Performance across feature groups for Ex-
periment 1. Scores are averaged F1 over ten cross-
validation folds. Using an independent t-test, *
and † indicate results from ten cross validation
rounds significantly different from BASIC and the
best feature combination BASIC + GAZE(W) +
GAZE(C), respectively.

restarts of various classification algorithms. We
thus approach the task of predicting misreadings
from gaze with ensemble methods, training N
classifiers independently on the same data and let-
ting them vote on the instances in a held-out devel-
opment set. Using this development set, we then
optimize a threshold t, which is the fraction of the
number of classifiers that need to cast a positive
vote on an item before we accept it as such.

All of our ensembles consist of 10 random
forest classifiers and 10 feed-forward neural net-
works. The random forests, in turn, consist of
100 trees that create splits based on Gini impu-
rity (Breiman, 2001). The neural network models
are implemented in Pytorch and trained with the
Adam algorithm (Kingma and Ba, 2014), with an
initial learning rate of 3·10−4 and a dropout rate of
0.2 on the hidden layers, whose number and sizes
we vary in our experiments. We further employ
early stopping, monitoring the loss on the devel-
opment set with a patience of 30 steps.

4.1 Multi-task learning for cross-user
knowledge transfer

One of the central questions we investigate in this
paper is to what degree gaze patterns for mis-
read words vary between readers, and whether
we can learn to transfer knowledge about predic-
tors of misreadings between readers. We address
these questions in the experiments reported in Sec-
tion 5.2, for which we use a multi-task learning

(MTL) model that employs hard parameter shar-
ing. MTL has received significant attention in the
natural language processing community over the
past years (see Bjerva (2017) for a review). One
of the most intriguing properties of MTL is that it
allows for the transfer of knowledge between dif-
ferent tasks and datasets, which has been investi-
gated and exploited in a growing number of works
(Klerke et al., 2016; Martı́nez Alonso and Plank,
2017; Bingel and Søgaard, 2017), including work
on the identification of complex words (Bingel and
Bjerva, 2018).

In this work, we view the different readers as
different tasks, motivated by Bingel and Bjerva
(2018), who interpret different languages as dif-
ferent tasks for cross-lingual complex word iden-
tification. We define a feed-forward neural net-
work model with one output layer per reader, all of
which are dense projections from a shared hidden
layer. In this framework, each training step con-
sists of flipping a coin to sample any of the tasks
and retrieving a batch of training data for this task.
This batch is then used to optimize both the shared
and the respective task-specific parameters. For a
detailed definition of the model, see Bingel and
Bjerva (2018).

5 Experiments

5.1 Experiment 1: Across entire dataset

As a first experiment, we investigate the perfor-
mance of our models and the predictiveness of
the individual feature groups through 10-fold cross
validation across the entire dataset. At each fold,
we reserve one tenth of the data for testing and
another tenth to monitor validation loss of the net-
work as the early stopping criterion.

Note that we split the data randomly and do not
stratify the cross-validation splits in any way. In
conjunction with the strong class imbalance, this
means that we are likely to encounter very differ-
ent class distributions across splits. This setup may
generally lead to lower performance scores, likely
with greater variance. However, this was a deliber-
ate choice as we cannot assume a consistent class
distribution across train and test set in the real
world, or in fact hardly any prior knowledge with
regards to class distribution in the test set. Random
splitting also means that data from the same read-
ing will likely be distributed across train and test
partitions for a certain cross-validation iteration.

We perform a first baseline experiment with
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Figure 3: Words and misreading counts for readings of three readers in cross-user experiment

UserId Number of Words per reading Thereof misread
reading sessions Mean std.dev. Mean std.dev.

10 7 285.9 67.5 16.6 9.9
15 6 219.2 148.1 5.0 2.3
16 5 91.6 32.7 8.0 3.1

Table 4: Statistics of (misread) words in sessions for the three readers with most readings.

only the basic features that we list in Section 2. On
top of this baseline feature set, we perform further
experiments, incorporating all combinations over
the other feature groups. The results we present in
Table 3 are based on the best respective model ar-
chitecture for each feature combination, evaluated
via the average over validation splits.6

5.2 Experiment 2: Cross-reader prediction

Without reader’s own data In a second exper-
iment, we are interested in how well our model
can predict misreadings for specific readers. For
this, we identify the three readers with most read-
ing sessions and perform a range of experiments,
testing our models on the readings of each of
these readers after training them on all other data.
We denote the three most active readers by their
unique, anonymized IDs as they appear in the
dataset: 10, 15 and 16. These readers have 7, 6
and 5 recorded and marked readings, respectively,
and we present statistics on these readings in Ta-
ble 4 and Figure 3. As in the previous experiment,
we optimize our model through cross validation to
tune hyperparameters and perform early stopping.
We report test data results for the model with op-
timal validation performance in Figure 4, broken
down into each reader’s different sessions.

6To address the variation in input dimensionality as we
consider different feature group combinations, we train mod-
els with different architectures: (i) a single hidden layer with
20 units, (ii) two hidden layers with 20 units each, and (iii) a
single hidden layer with 40 units.

Learning from reader’s own data Comple-
menting the setup above, we now investigate how
data from the same reader, but from different read-
ing sessions, can inform our models. Therefore,
we further perform cross-validation experiments
across each reader’s sessions. More concretely, for
a reader with n marked readings, we perform n-
fold cross validation, holding out one reading a
time as a test set and another to monitor valida-
tion loss for early stopping of the neural model,
while training on the remaining n− 2 readings.

MTL As outlined in Section 4.1, we now view
readers as tasks in an MTL model. For each of
the three readers identified above and for each test
reading, we train an ensemble whose neural MTL
models define two outputs: one for the reader in
question and one combined output for all other
readers in the entire dataset. The random forest
classifiers are trained on all remaining data except
the held-out validation and test readings.

6 Results and Discussion

From Experiment 1, we observe that gaze fea-
tures of the target word itself contribute strongly to
model improvements over the baseline of textual
features (see Table 3). Contextual gaze features
and linguistic features do so to a lesser degree. The
best feature group combination consists of the ba-
sic features and both gaze feature groups. Adding
the linguistic features to this seems to slightly di-
lute the model.
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Figure 4: F1 score distributions across test readings
for each of the three readers with most sessions for
three tasks.

The results from Experiment 2 in Figure 4 show
that, at least for these three readers, there is a
considerable degree of specificity attested in the
reading patterns of misread words: in the scenario
where we learn only from other users’ gaze pat-
terns (shown in light blue), performance is gen-
erally worse than for the other approaches. The
high degree of reader specificity is also reflected
in the comparison between learning just across a
single user’s readings and a multi-task setup that
also considers other readers. Here, we observe that
the former attains higher mean F1 scores across
readings for readers 10 and 16, although MTL is
superior to the single-task setup for reader 15. An-
other observation is that misreadings can gener-
ally be predicted much better for reader 16 than for
the other readers, which may in part be due to the
higher ratio of misread words in these readings.

As especially our cross-reader experiments
show, there is reason to believe that the manifes-
tations of misreadings in gaze differ strongly be-
tween these readers. However, since we do not
have information on the individual readers’ age
or general reading proficiency, we cannot con-
fidently conclude whether the better stability of
within-user experiments attested in Figure 4 is due
to reader-specific idiosyncrasies or group-internal
patterns (which would be supported by evidence
that readers 10 and 16 were more atypical read-
ers than others in the present dataset). We find
some support for the latter hypothesis in literature
describing children’s reading development, which
identifies a range of patterns common to young
and low-proficiency readers. These patterns in-
clude longer and more frequent fixations, shorter

saccadic amplitude and more regressions – all of
which are also associated with comprehension dif-
ficulties, see Blythe and Joseph (2011) for a re-
view. The presence of group-internal patterns is
further supported by the observation that we are
still able to successfully transfer knowledge about
readings patterns between users in some cases, in-
creasing performance for the readings of user 15.

One disadvantage of noisy, real-world data is
that we do not know to what degree similarities
and differences in the data, as well as our results,
are influenced by chance, or whether they will
generalize to other gaze data. The fact that many
parameters are outside of our control and also out-
side of our knowledge means that we cannot de-
scribe certain biases in the data (such as age or
reading skill) and consider them as causes for sta-
tistical variations in model performance.

7 Conclusion

This paper presented first work in the auto-
matic prediction of reading errors in children
with dyslexia and other reading difficulties using
real-world gaze data. We showed that despite the
noisy conditions under which this data was ob-
tained, features we extract from the gaze patterns
are predictive of reading mistakes among children.
Besides the immediate application in automating
some parts of reading teaching, this could be ex-
ploited in personalized text simplification, where
gaze could be used as feedback to the system.

Our experiments further show that while gaze
patterns for misreadings seem to be largely spe-
cific to individual readers or groups of readers, we
can successfully use MTL to transfer knowledge
between readers at least in some cases. Note also
that we have very little knowledge of the age and
general proficiency of specific readers, including
those investigated in our MTL experiments, and
we expect that our MTL approach can be much
more successful between more similar readers.
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